ملاحظة
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification#
هذا المثال يوضح كيف أن مقدرات Ledoit-Wolf وOracle Approximating Shrinkage (OAS) لمصفوفة التباين يمكن أن تحسن التصنيف.

# المؤلفون: مطوري scikit-learn
# معرف الترخيص: BSD-3-Clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.covariance import OAS
from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
n_train = 20 # عدد العينات للتدريب
n_test = 200 # عدد العينات للاختبار
n_averages = 50 # عدد مرات تكرار التصنيف
n_features_max = 75 # الحد الأقصى لعدد الميزات
step = 4 # حجم الخطوة للحساب
def generate_data(n_samples, n_features):
"""توليد بيانات عشوائية شبيهة بالكرات مع ميزات ضوضائية.
هذه الدالة تعيد مصفوفة بيانات الإدخال بشكل `(n_samples, n_features)`
ومصفوفة لعلامات التصنيف `n_samples`.
ميزة واحدة فقط تحتوي على معلومات تمييزية، والميزات الأخرى
تحتوي فقط على ضوضاء.
"""
X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])
# إضافة ميزات غير تمييزية
if n_features > 1:
X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y
acc_clf1, acc_clf2, acc_clf3 = [], [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
score_clf1, score_clf2, score_clf3 = 0, 0, 0
for _ in range(n_averages):
X, y = generate_data(n_train, n_features)
clf1 = LinearDiscriminantAnalysis(
solver="lsqr", shrinkage=None).fit(X, y)
clf2 = LinearDiscriminantAnalysis(
solver="lsqr", shrinkage="auto").fit(X, y)
oa = OAS(store_precision=False, assume_centered=False)
clf3 = LinearDiscriminantAnalysis(solver="lsqr", covariance_estimator=oa).fit(
X, y
)
X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)
score_clf3 += clf3.score(X, y)
acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)
acc_clf3.append(score_clf3 / n_averages)
features_samples_ratio = np.array(n_features_range) / n_train
plt.plot(
features_samples_ratio,
acc_clf1,
linewidth=2,
label="LDA",
color="gold",
linestyle="solid",
)
plt.plot(
features_samples_ratio,
acc_clf2,
linewidth=2,
label="LDA with Ledoit Wolf",
color="navy",
linestyle="dashed",
)
plt.plot(
features_samples_ratio,
acc_clf3,
linewidth=2,
label="LDA with OAS",
color="red",
linestyle="dotted",
)
plt.xlabel("n_features / n_samples")
plt.ylabel("Classification accuracy")
plt.legend(loc="lower left")
plt.ylim((0.65, 1.0))
plt.suptitle(
"LDA (Linear Discriminant Analysis) vs. "
+ "\n"
+ "LDA with Ledoit Wolf vs. "
+ "\n"
+ "LDA with OAS (1 discriminative feature)"
)
plt.show()
Total running time of the script: (0 minutes 8.466 seconds)
Related examples

مقارنة بين الإسقاط ثنائي الأبعاد للمجموعة البيانات آيريس باستخدام LDA وPCA
مقارنة بين الإسقاط ثنائي الأبعاد للمجموعة البيانات آيريس باستخدام LDA وPCA

sphx_glr_auto_examples_classification_plot_lda_qda.py
هذا مثال لرسم حدود التمييز والقطع الناقص لتشتت كل فئة، والتي تم تعلمها بواسطة LinearDiscriminantAnalysis (LDA) و QuadraticDiscriminantAnalysis (QDA). يُظهر القطع الناقص الانحراف المعياري المزدوج لكل فئة. مع LDA، يكون الانحراف المعياري هو نفسه لجميع الفئات، في حين أن لكل فئة انحرافها المعياري الخاص بها مع QDA.