SGD: دالات الخسارة المقعرة#

رسم بياني يقارن بين دالات الخسارة المقعرة المختلفة المدعومة من قبل SGDClassifier .

plot sgd loss functions
# المؤلفون: مطوري سكايلرن
# معرف الترخيص: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np


def modified_huber_loss(y_true, y_pred):
    z = y_pred * y_true
    loss = -4 * z
    loss[z >= -1] = (1 - z[z >= -1]) ** 2
    loss[z >= 1.0] = 0
    return loss


xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
lw = 2
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss")
plt.plot(
    xx,
    np.where(xx < 1, 1 - xx, 0) ** 2,
    color="orange",
    lw=lw,
    label="Squared hinge loss",
)
plt.plot(
    xx,
    modified_huber_loss(xx, 1),
    color="darkorchid",
    lw=lw,
    linestyle="--",
    label="Modified Huber loss",
)
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y=1, f(x))$")
plt.show()

Total running time of the script: (0 minutes 0.107 seconds)

Related examples

SGD: العينات المرجحة

SGD: العينات المرجحة

توضيح تصنيف العملية الغاوسية (GPC) على مجموعة بيانات XOR

توضيح تصنيف العملية الغاوسية (GPC) على مجموعة بيانات XOR

مثال على هوامش SVM

مثال على هوامش SVM

تمرين SVM

تمرين SVM

Gallery generated by Sphinx-Gallery